Table of Content

- Introduction
- Shear Strength of Soils
- Seepage Analysis
- Methods of Slope Stability Analysis
- Design of Earth Retaining Structures
- Example Problems
- Three weeks of classes
Introduction

• There are two types of earth retaining structures
 – Embankments (slope stability analysis)
 – Retaining walls (rigid - gravity - and flexible walls)

Basic Concepts of Lateral Earth Pressures

• At Rest or \(K_o \) Condition
 – The horizontal strain is zero

\[
\sigma_{AV} = \gamma z_w + \gamma_{sat}(z_A - z_w) \\
\gamma_{sat} = \gamma_z (z_A - z_w) \\
\sigma'_{AV} = \sigma_{AV} - \gamma_{sat} \\
\sigma'_{AH} = K_o \sigma'_{AV} \\
K_o = 1 - \sin(\phi) \quad \text{(for NC soils)} \\
\sigma_{AH} = \sigma'_{AH} + \gamma_{sat}
\]
Basic Concepts of Lateral Earth Pressures

• Active K_A and Passive K_P Conditions
 – There is horizontal deformation

Basic Concepts of Lateral Earth Pressures

• Active K_A and Passive K_P Conditions
 – Limit equilibrium analysis
 – Coulomb (1776): upper bound theorem
 – Rankine (1857): lower bound theorem
 – Assumptions:
 • The earth retaining wall is vertical
 • The wall earth interface is frictionless (no shear stresses)
 • The soil surface is horizontal (no shear stresses)
 • The wall is rigid and the soil is dry, homogeneous and isotropic
 • The soil is loose and initially at rest
Basic Concepts of Lateral Earth Pressures

• Active K_A and Passive K_P Conditions
 – Coulomb (1776): upper bound theorem

$$F_p = \phi / 2$$

$$W$$

Fp

45-\(\phi / 2\)

Rankine passive zone

Wall movement

Fp

45-\(\phi / 2\)

Rankine active zone

Fq

45+\(\phi / 2\)

Basic Concepts of Lateral Earth Pressures

• Active K_A and Passive K_P Conditions
 – Rankine (1857): lower bound theorem

$$\sigma'_{v}$$

Failure surface

$K_a\sigma'_{v}$

$K_p\sigma'_{v}$

$K_a\sigma'_{v}$

$K_p\sigma'_{v}$

$K_a = \frac{1 - \sin(\phi)}{1 + \sin(\phi)}$

$K_p = \frac{1 + \sin(\phi)}{1 - \sin(\phi)}$
Basic Concepts of Lateral Earth Pressures

- **Active** K_A and **Passive** K_P Conditions

\[
K = \begin{cases}
\frac{1}{2} \gamma K_a H^2 & \text{Active zone} \\
\frac{1}{2} \gamma K_p H^2 & \text{Passive zone}
\end{cases}
\]

\[
F_a = \frac{1}{2} \gamma K_a H^2 \\
F_p = \frac{1}{2} \gamma K_p H^2
\]

Example Problem

- **Active Case**

 - Determine the resultant earth force (magnitude and position) and the factors of safety against sliding and overturning

\[
\begin{align*}
\gamma &= 15 \text{ kN/m}^3 \\
\phi &= 30 \text{ deg} \\
\gamma_{sat} &= 20 \text{ kN/m}^3 \\
\gamma_w &= 10 \text{ kN/m}^3 \\
\phi &= 35 \text{ deg} \\
\gamma_{concrete} &= 25 \text{ kN/m}^3 \\
\phi_{rock-concrete} &= 45 \text{ deg}
\end{align*}
\]
The Effect of Pore Water

• Active Case – No Drains
 – Determine the resultant earth force (magnitude and position) and the factors of safety against sliding and overturning

\[\gamma_{sat} = 20 \text{kN/m}^3 \]
\[\gamma_w = 10 \text{kN/m}^3 \]
\[\phi = 35 \text{ deg} \]
\[\gamma_{concrete} = 25 \text{kN/m}^3 \]
\[\phi_{rock-concrete} = 45 \text{ deg} \]

The Effect of Pore Water

• Active Case – Drains
 – Determine the resultant earth force (magnitude and position) and the factors of safety against sliding and overturning

\[\gamma_{sat} = 20 \text{kN/m}^3 \]
\[\gamma_w = 10 \text{kN/m}^3 \]
\[\phi = 35 \text{ deg} \]
\[\gamma_{concrete} = 25 \text{kN/m}^3 \]
\[\phi_{rock-concrete} = 45 \text{ deg} \]
Cantilever Sheet Pile Walls

• Analysis

- Select a point O (arbitrary)
- Calculate the active and passive earth pressures (reduce the strength parameters: ϕ/F_ϕ, where $F_\phi = 1.2$ to 1.5)
- Calculate the net pore water pressure and the seepage force.
- Determine the depth d_o by summing moments about O.
- Determine $d = 1.2$ to $1.3 \times d_o$.
- Calculate R by summing forces horizontally over the depth $(H_o + d)$.

H_o = depth of excavation
$d =$ depth of embedment
$d_o =$ depth of rotation

Pressure distribution
Approximated pressure distribution
Cantilever Sheet Pile Walls

• Analysis (cont.)
 – Determine net passive resistance between \(d_o \) and \(d \).
 – Check that \(R \) is greater than net passive resistance. If not extent the depth of embedment and determine new \(R \).
 – Calculate the maximum bending moment \(M_{\text{max}} \) over \(H_o-d_o \).
 – Determine the section modulus: \(S = \frac{M_{\text{max}}}{\sigma_{\text{allow}}} \).

References and Bibliography